We study the blow-up behavior of minimizing sequences for the singular Moser–Trudinger functional on compact surfaces. Assuming non-existence of minimum points, we give an estimate for the infimum value of the functional. This result can be applied to give sharp Onofri-type inequalities on the sphere in the presence of at most two singularities.
Onofri-Type inequalities for singular liouville equations / Mancini, Gabriele. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 26:2(2016), pp. 1202-1230. [10.1007/s12220-015-9589-3]
Onofri-Type inequalities for singular liouville equations
Mancini, Gabriele
2016
Abstract
We study the blow-up behavior of minimizing sequences for the singular Moser–Trudinger functional on compact surfaces. Assuming non-existence of minimum points, we give an estimate for the infimum value of the functional. This result can be applied to give sharp Onofri-type inequalities on the sphere in the presence of at most two singularities.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Onofri.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
568.37 kB
Formato
Adobe PDF
|
568.37 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.